No es hasta más tarde cuando podemos contar el número de manzanas que hay en una caja cuando no hay ninguna.
Los antiguos griegos y los romanos, célebres por sus proezas de ingeniería, carecían de una forma eficaz de lidiar con el número de manzanas que había en una caja vacía. Ellos no lograron dar un nombre a la «nada». Los romanos tenían sus formas de combinar I, V, X, L, C, D y M, pero ¿y el 0? Ellos no contaban «nada». ¿Cómo llegó a ser aceptado el cero? Se cree que el uso de un símbolo que designa «la nada» tuvo su origen hace miles de años.
La civilización maya, en lo que es ahora México, usó el cero en diversas formas. Algún tiempo después, el astrónomo Claudio Ptolomeo, influido por los babilonios, usó un símbolo semejante a nuestro moderno 0 como marcador de posición en su sistema numérico.
Como marcador de posición, el cero se podía usar para distinguir ejemplos (en notación moderna) como 75 y 705, en lugar de basarse para ello en el contexto, como habían hecho los babilonios. Esto se podría comparar con la introducción de la «coma» en el lenguaje: ambos ayudan a leer el significado correcto. Pero, así como la coma viene acompañada de un conjunto de reglas para su uso, también tiene que haber reglas para usar el cero.
Brahmagupta trató el cero como un «número», no como un mero marcador de posición, y expuso unas reglas para operar con él. Éstas incluían que «la suma de un número positivo y cero es positiva» y que «la suma de cero y cero es cero». Al pensar en el cero como un número, Brahmagupta fue bastante avanzado.
El sistema de numeración hindú-arábigo que incluyó el cero de esta manera fue promulgado en occidente por Leonardo de Pisa, Fibonacci, en su Liber Abaci (Libro del ábaco), publicado en 1202. Instruido en la aritmética hindú-arábiga, reconoció el poder del uso del símbolo adicional 0 combinado con los símbolos hindúes 1, 2, 3, 4, 5, 6, 7, 8 y 9.
El lanzamiento del cero dentro del sistema numérico planteaba un problema del que Brahmagupta se había ocupado brevemente: ¿cómo se habría de tratar a este «intruso»? ¿Cómo podría integrarse el cero en el sistema aritmético de entonces de una forma más precisa? Algunos ajustes eran sencillos. Cuando se trataba de hacer sumas y multiplicaciones, el 0 encajaba perfectamente, pero «el extranjero» no encajaba fácilmente en las operaciones de sustracción y división. ¿Cómo funciona el cero? La adición y la multiplicación con el cero son sencillas y en absoluto polémicas (se puede agregar 0 a 10 para obtener cien, pero nos referiremos a la adición en el sentido menos imaginativo de esta operación numérica). Sumar 0 a un número deja a ese número inalterado, mientras que multiplicar 0 por cualquier número siempre da 0 como solución. Por ejemplo, tenemos 7 + 0 = 7 y 7 × 0 = 0. La sustracción es una operación sencilla pero puede llevar a negativos, 7 – 0 = 7 y 0 – 7 = – 7, mientras que la división que implica al cero plantea dificultades.
¿Para qué sirve el cero?
Sencillamente, no podríamos prescindir del 0. El progreso de la ciencia ha dependido de él. Hablamos de cero grados de longitud, de cero grados en la escala de temperatura, cero y, de igual modo, de energía cero, y de gravedad cero. El cero ha entrado en el lenguaje no científico con ideas tales como la hora cero.
Cuando se introdujo el 0, se debió de considerar algo extraño, pero los matemáticos tienen la manía de aferrarse a conceptos extraños que resultan ser útiles mucho más tarde. El equivalente de ello en la actualidad se da en la teoría de conjuntos, en la que la idea de un conjunto es un grupo de elementos. En esta teoría ø designa al conjunto sin ningún elemento, el llamado «conjunto vacío». Ahora esa idea resulta extraña, pero, al igual que el 0, es indispensable.
Hoy aprendi mas que ayer....
No hay comentarios.:
Publicar un comentario